首页> 外文OA文献 >Network rigidity at finite temperature: Relationships between thermodynamic stability, the non-additivity of entropy and cooperativity in molecular systems
【2h】

Network rigidity at finite temperature: Relationships between thermodynamic stability, the non-additivity of entropy and cooperativity in molecular systems

机译:有限温度下的网络刚度:两者之间的关系   热力学稳定性,熵的非加性和协同性   分子系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A statistical mechanical distance constraint model (DCM) is presented thatexplicitly accounts for network rigidity among constraints present within asystem. Constraints are characterized by local microscopic free energyfunctions. Topological re-arrangements of thermally fluctuating constraints arepermitted. The partition function is obtained by combining microscopic freeenergies of individual constraints using network rigidity as an underlyinglong-range mechanical interaction -- giving a quantitative explanation for thenon-additivity in component entropies exhibited in molecular systems. Twoexactly solved 2-dimensional toy models representing flexible molecules thatcan undergo conformational change are presented to elucidate concepts, and tooutline a DCM calculation scheme applicable to many types of physical systems.It is proposed that network rigidity plays a central role in balancing theenergetic and entropic contributions to the free energy of bio-polymers, suchas proteins. As a demonstration, the distance constraint model is solvedexactly for the alpha-helix to coil transition in homogeneous peptides.Temperature and size independent model parameters are fitted to Monte Carlosimulation data, which includes peptides of length 10 for gas phase, andlengths 10, 15, 20 and 30 in water. The DCM is compared to the Lifson-Roigmodel. It is found that network rigidity provides a mechanism for cooperativityin molecular structures including their ability to spontaneously self-organize.In particular, the formation of a characteristic topological arrangement ofconstraints is associated with the most probable microstates changing underdifferent thermodynamic conditions.
机译:提出了统计机械距离约束模型(DCM),该模型明确考虑了系统中存在的约束之间的网络刚性。约束的特征在于局部微观自由能函数。允许对热波动约束进行拓扑重新排列。通过使用网络刚度作为潜在的远程机械相互作用,通过组合单个约束的微观自由能来获得分配函数-定量解释了分子系统中组分熵的非可加性。提出了两个精确求解的二维玩具模型,它们表示可以经历构象变化的柔性分子,以阐明概念,并概述了适用于多种类型物理系统的DCM计算方案。建议网络刚性在平衡能量和熵的贡献中起核心作用生物蛋白等蛋白质的自由能。作为演示,精确求解了均相肽段中α-螺旋到线圈过渡的距离约束模型。温度和尺寸无关的模型参数拟合到Monte Carlo模拟数据,其中包括气相长度为10的肽以及长度为10、15的肽在水中20和30。将DCM与Lifson-Roig模型进行比较。研究发现,网络刚性为分子结构的协同性提供了一种机制,包括它们自发自组织的能力。特别是,约束条件的典型拓扑结构的形成与在不同热力学条件下变化的最可能微观状态有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号